Ultrastructural characterization of exine development of the transient defective exine 1 mutant suggests the existence of a factor involved in constructing reticulate exine architecture from sporopollenin aggregates.

نویسندگان

  • Tohru Ariizumi
  • Takahiro Kawanabe
  • Katsunori Hatakeyama
  • Shusei Sato
  • Tomohiko Kato
  • Satoshi Tabata
  • Kinya Toriyama
چکیده

A male-sterile mutant of Arabidopsis thaliana, in which filament elongation was defective although pollen fertility was normal, was isolated by means of T-DNA tagging. Transmission electron microscopy (TEM) analysis revealed that primexine synthesis and probacula formation, which are thought to be the initial steps of exine formation, were defective, and that globular sporopollenin aggregation was randomly deposited onto the microspore at the early uninucleate microspore stage. Sporopollenin aggregation, which failed to anchor to the microspore plasma membrane, was deposited on the locule wall and in the locule at the uninucleate microspore stage. However, visually normal exine with a basic reticulate structure was observed at the middle uninucleate microspore stage, indicating that the exine formation was restored in the mutant. Thus, the mutant was designated transient defective exine 1 (tde1). These results indicated that tde1 mutation affects the initial process of the exine formation, but does not impair any critical processes. Our results also suggest the existence of a certain factor responsible for exine patterning in A. thaliana. The TDE1 gene was found to be identical to the DE-ETIOLATED 2 gene known to be involved in brassinosteroid (BR) biosynthesis, and the tde1 probacula-defective phenotypes were recovered in the presence of BR application. These results suggest that BRs control the rate or efficiency of initial process of exine pattern formation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification of kaonashi Mutants Showing Abnormal Pollen Exine Structure in Arabidopsis thaliana

Exine, the outermost architecture of pollen walls, protects male gametes from the environment by virtue of its chemical and physical stability. Although much effort has been devoted to revealing the mechanism of exine construction, still little is known about it. To identify the genes involved in exine formation, we screened for Arabidopsis mutants with pollen grains exhibiting abnormal exine s...

متن کامل

Role of Glycosyltransferases in Pollen Wall Primexine Formation and Exine Patterning1[OPEN]

The pollen cell wall is important for protection of male sperm from physical stresses and consists of an inner gametophytederived intine layer and a sporophyte-derived exine layer. The polymeric constituents of the robust exine are termed sporopollenin. The mechanisms by which sporopollenin is anchored onto microspores and polymerized in specific patterns are unknown, but the primexine, a trans...

متن کامل

Role of Glycosyltransferases in Pollen Wall Primexine Formation and Exine Patterning.

The pollen cell wall is important for protection of male sperm from physical stresses and consists of an inner gametophyte-derived intine layer and a sporophyte-derived exine layer. The polymeric constituents of the robust exine are termed sporopollenin. The mechanisms by which sporopollenin is anchored onto microspores and polymerized in specific patterns are unknown, but the primexine, a tran...

متن کامل

ATP-binding cassette transporter G26 is required for male fertility and pollen exine formation in Arabidopsis.

The highly resistant biopolymer, sporopollenin, gives the outer wall (exine) of spores and pollen grains their unparalleled strength, shielding these structures from terrestrial stresses. Despite a limited understanding of the composition of sporopollenin, it appears that the synthesis of sporopollenin occurs in the tapetum and requires the transport of one or more sporopollenin constituents to...

متن کامل

DEX1, a novel plant protein, is required for exine pattern formation during pollen development in Arabidopsis.

To identify factors that are required for proper pollen wall formation, we have characterized the T-DNA-tagged, dex1 mutation of Arabidopsis, which results in defective pollen wall pattern formation. This study reports the isolation and molecular characterization of DEX1 and morphological and ultrastructural analyses of dex1 plants. DEX1 encodes a novel plant protein that is predicted to be mem...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant & cell physiology

دوره 49 1  شماره 

صفحات  -

تاریخ انتشار 2008